Designing the Cell-Free Gene Expression Environment with the One-Pot PURE System

Yan Zhang¹, Matas Deveikis², Yanping Qiu¹, Lovisa Björn¹, Zachary Martinez¹, Tsui-Fen Chou¹, Paul Freemont², Richard Murray¹

California Institute of Technology
 Imperial College London

Cell-free systems recreate the chemical reactions of life

Living systems are assembled through a series of chemical reactions

"Cell-free" systems recreate the chemical reactions of life in a test tube

Cell-free systems come in varying degrees of freedom

Crude Cell Lysate

Protein synthesis <u>Using Recombinant Elements</u> (PURE) system

Transcription factor

Translation factors

Ribosome complex

AA-tRNA synthetases

Energy regeneration factors

Easy to prepare
Recapitulate the native cell proteome

A nightmare to prepare

Full control over the reaction environment

Preparing PURE system is highly labor-intensive

Protein synthesis <u>Using Recombinant Elements</u> (PURE) system

Transcription factor **x1**

Translation factors **x10**

Ribosome complex

AA-tRNA synthetases **x21**

Energy regeneration factors **x4**

A nightmare to prepare

Full control over the reaction environment

One-Pot co-culture offers a streamlined approach to PURE

Protein synthesis <u>Using Recombinant Elements</u> (PURE) system

Transcription factor **x1**

Translation factors **x10**

Ribosome complex

AA-tRNA synthetases **x21**

Energy regeneration factors **x4**

A nightmare to prepare

Full control over the reaction environment

But One-Pot PURE productivity can be a hit-or-miss

One-Pot PURE Lavickova et al., 2019

Overview of this talk

Preventing PURE protein "dropouts" is important for a productive system

Transfer RNA (tRNA) pool is an underappreciated complexity

Low One-Pot PURE productivity comes from PURE protein dropouts

PURE protein dropouts in coculture is a frequent and stochastic event

Low One-Pot PURE productivity comes from PURE protein dropouts

First batch of **One-Pot PURE** deGFP Conc (µM) ref A ref B One-Pot PURE 10 15 20 5 DNA Conc (nM)

One-Pot PURE Workflow

I refuse to do 36 fresh transformations every time!

PURE protein dropouts arise from cell growth burden

One-Pot PURE Workflow

Glucose catabolite repression increase intracellular Lacl

Overview of this talk

Preventing PURE protein "dropouts" is important for a productive system

Transfer RNA (tRNA) pool is an underappreciated complexity

Same One-Pot PURE proteins, different behaviors in two energy mixes

Homemade tRNA solution revealed hidden complexity of tRNA pool

Building synthetic biosystems require systems-level knowledge

tRNA abundances

Weight Series Series

1 codon per amino acid

Design gene expression to match the tRNA pool

Design minimal tRNA pool with known composition

In summary

PURE protein dropouts during
One-Pot coculture can be mitigated
with media optimization

Protein design

Protein coding sequence needs to match the tRNA pool for productive expression

People who made this work possible

Murray Lab Members

Paul Freemont Lab, Imperial College London

Matas Deveikis

Caltech PEL

- Prof. Tsuifen Chou
- Dr. Yanping Qiu

Funding Sources

Slide deck for this talk available at: yzhang952.github.io/files/ACS2025.pdf

Manuscript for this work available at: 10.1021/acssynbio.4c00779

CAS Future Leaders™